Abstract

This work explores the use of both hydrophilic interaction liquid chromatography (HILIC) and reverse phase liquid chromatography (RPLC) for the separation and subsequent characterization of bovine caseinomacropeptide (CMP) phosphopeptides and O-glycopeptides using a quadrupole-time-of-flight (QTOF) mass spectrometer with electrospray ionization. Two neutral, ethylene bridged hybrid (BEH) amide and polyhydroxyethyl aspartamide (PHEA), and a zwitterionic, sulfobetaine (ZIC), stationary phases were used for the HILIC mode, whilst an octadecylsilane (C18) stationary phase was employed for the RPLC separation. Overall, developed HILIC-QTOF method using the ZIC or BEH amide stationary phases resulted to be the most efficient methods to separate and characterize post-translationally modified (PTM) peptides without the need of any previous fractionation or derivatization step. The separation of phosphopeptides and differently sialylated O-glycopeptides in the ZIC stationary phase was dominated by an electrostatic repulsion interaction mechanism between the negatively charged phosphate groups or sialic acid moieties and the negatively charged terminal sulfonate group of the stationary phase, whereas the separation of either non-modified peptides or neutral O-glycopeptides both free of basic amino acids was based on a partitioning mechanism. In neutral amide columns, the separation was mainly dominated by hydrophilic partitioning, leading to a higher retention of the post-translationally modified peptides than the unmodified counterparts due to the hydrophilicity provided by the phosphate groups and/or O-glycans. As a consequence, HILIC-ESI-QTOF MS operating in the positive ion mode is a powerful tool for the characterization of underivatized O-glycopeptides and phosphopeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.