Abstract
Postsynaptic intracellular Ca(2+) concentration ([Ca(2+)](i)) has been proposed to play an important role in both synaptic plasticity and synaptic homeostasis. In particular, postsynaptic Ca(2+) signals can alter synaptic efficacy by influencing transmitter release, receptor sensitivity, and protein synthesis. We examined the postsynaptic Ca(2+) transients at the Drosophila larval neuromuscular junction (NMJ) by injecting the muscle fibers with Ca(2+) indicators rhod-2 and Oregon Green BAPTA-1 (OGB-1) and then monitoring their increased fluorescence during synaptic activity. We observed discrete postsynaptic Ca(2+) transients along the NMJ during single action potentials (APs) and quantal Ca(2+) transients produced by spontaneous transmitter release. Most of the evoked Ca(2+) transients resulted from the release of one or two quanta of transmitter and occurred largely at synaptic boutons. The magnitude of the Ca(2+) signals was correlated with synaptic efficacy; the Is terminals, which produce larger excitatory postsynaptic potentials (EPSPs) and have a greater quantal size than Ib terminals, produced a larger Ca(2+) signal per terminal length and larger quantal Ca(2+) signals than the Ib terminals. During a train of APs, the postsynaptic Ca(2+) signal increased but remained localized to the postsynaptic membrane. In addition, we showed that the plasma membrane Ca(2+)-ATPase (PMCA) played a role in extruding Ca(2+) from the postsynaptic region of the muscle. Drosophila melanogaster has a single PMCA gene, predicted to give rise to various isoforms by alternative splicing. Using RT-PCR, we detected the expression of multiple transcripts in muscle and nervous tissues; the physiological significance of the same is yet to be determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.