Abstract

Many steps are needed in the synthesis of a new active pharmaceutical ingredient (API). In a practical case proposed by a French pharmaceutical company, an intermediate synthesis step, needed to protect 8 hydroxyl groups before oxidation, could produce a mixture of neutral compounds containing up to 652 structures being positional isomers of 18 molecular formulas. Some mixtures allowed obtaining the desired API, others did not. An efficient analytical method was needed to characterize these neutral positional isomers and identify the mixtures to reject. Two samples were provided by the pharmaceutical company: Sample A was conform, Sample B was not. 8 RPLC columns were used with different gradients to screen Sample A. Next, the best RPLC separation was used as the second dimension fast analysis in a comprehensive 2D-RPLC systems. Two columns were used as first dimension: a fluorinated one and a zirconium based one. An order of magnitude was gained in peak capacity, but a better sample characterization was still needed. An off-line RPLC x SFC x Q-TOF/MS analysis was performed collecting 96 RPLC fractions and analyzing them by SFC with Q-TOF/MS detection. A home-made software associated the 96 SFC MS chromatograms to produce either base peak (BPC) or extract ion (EIC) contour plots that allowed for a satisfying characterization of the samples. Subtracting the EIC of expected m/z compounds from the Sample B BPC contour plot produced a unique new contour plot clearly pointing out unexpected compounds explaining the failure of the synthesis and possibly allowing improving the synthesis process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call