Abstract

Portland cement is the most popular material used in construction. It is characterized by exceptional thermal, mechanical, and durability properties. However, an alarming amount of pollution and energy consumption is generated during its production [1]. Scientists are in continuous search to find new environmentally friendly cementitious materials, exhibiting good mechanical properties. Geopolymer is looked at as the new inorganic binders fulfilling these specifications. The work suggested by scientists shows that geopolymer has very good mechanical properties when compared to concrete, and has a lower carbon footprint, leading to a great potential for using it as a full or partial replacement for ordinary Portland cement [2]. However, few tests have been done on geopolymer specimens with various porosities, especially geopolymer concrete made using Lebanese metakaolin. This study aims to create Lebanese metakaolin-based geopolymer mixes having dissimilar porosities and test their mechanical properties to assess if they can be used as environmentally friendly materials. This will determine the effect of porosity on the mechanical performance of GPC made with Lebanese metakaolin. Assessing these properties can support the elaboration of materials that are more sustainable and environmentally friendly as some applications require a permeable medium. Results indicated very promising values when comparing the compressive strength of the tested Geopolymer with respect to Ordinary Portland Cement. Therefore, geopolymer mortars are less affected by porosity than OPC and reliably elaborating a material that has gained its place as a feasible and sustainable building material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.