Abstract

Water transport is vital for the durability of ultra-high performance concrete (UHPC) in engineering, but its absorption behavior requires further comprehension. This study investigates the impact of silica fume (SF) and metakaolin (MK) on water absorption in UHPC matrix with a high volume of limestone powder (LS) under two curing temperatures, and the variation in water transport with pore size obtained by low field nuclear magnetic resonance (LF-NMR). Relations between cumulative water absorption with other properties were discussed, and the pore size distribution (PSD) measured by Mercury intrusion porosimetry (MIP) was compared with that determined by LF-NMR. Results showed that MK outperformed SF in reducing water absorption in UHPC matrix, containing 30% LS under steam curing due to the synergistic effect between MK and LS. The incorporation of LS greatly affected the water absorption process of UHPC matrix. In samples without LS, capillary and gel pores absorbed water rapidly within the first 6 h and slowly from 6 h to 48 h simultaneously. However, in samples with 30% LS, gel pore water decreased during water absorption process due to the coarsening of gel pores. MK was able to suppress gel pore deterioration caused by the addition of a large amount of LS. Compared with PSD measured by MIP, NMR performed better in detecting micropores (<10 nm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.