Abstract

We report two improvements of our all-silicon carbide (SiC) micromachined capacitive diaphragm-based pressure sensors: Ti/TaSi2/Pt contact metallization to enhance temperature cycling durability and a 0.5 μm-thin sensing gap to further improve sensor sensitivity. Three sensors with 0.5 μm and 1.5 μm sensing gaps were packaged individually in high temperature ceramic packages and characterized to designed (static) pressures of 2.1 MPa (300 psi), 3.4 MPa (500psi) and 6.9 MPa (1000 psi) up to 550°C. For the 3.4 MPa range sensor (0.5 μm gap, 70 μm diaphragm radius), a sensitivity of 0.06 fF/Pa and a nonlinearity of 2.0% was obtained at 550°C in contact mode operation. In comparison, the 2.1 MPa range sensor (1.5 μm gap, 95 μm diaphragm radius) demonstrated a sensitivity of 0.07 fF/Pa and a nonlinearity of 4.6% at 550°C in contact mode operation. The 6.9 MPa range sensor (1.5 μm gap, 70 μm diaphragm radius) demonstrated a sensitivity of 0.03 fF/Pa and a nonlinearity of 4.0% at 500°C, also in contact mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.