Abstract

Several available Prunus chloroplast genomes have not been exploited to develop polymorphic chloroplast microsatellites that could be useful in Prunus phylogenetic analysis and maternal lineage group (MLG) categorization. In this study, using available bioinformatics tools, 80, 75, and 78 microsatellites were identified from the chloroplast genome of P. persica (CPpe), P. kansuensis (CPka), and P. mume (CPmu), respectively. The genome features and polymorphism status of these microsatellites were characterized. The genomic locations and motif types of most chloroplast microsatellites were conserved in CPpe, CPka, and CPmu. Of the 67 microsatellites with primer sequences and names, 57 were polymorphic for their in silico motif, amplicon lengths, or both among the three genomes. Based on the genotyping data of eight most polymorphic microsatellites, eight unique MLGs were found among the 736 peach materials in a breeding program. Most peach cultivars (111 of 161 genotyped) belong to MLG-1, the Chinese Cling-derived group reflecting the heavy use of this germplasm in early peach development. Forty-one cultivars belong to MLG-2, the European-derived group of peaches. MLG-3 consists of ornamental accessions. MLG-4 and MLG-5 contain only ‘Flordaking’ and ‘Reliance’, respectively. MLG-6 to MLG-8 consists of selections derived from P. tangutica, P. davidiana, and P. mira, respectively. These amplicons from the representative material for each MLG were sequenced, revealing additional single nucleotide polymorphisms (SNPs) within the amplicons. With the polymorphism status and amplification reliability validated, these new polymorphic chloroplast microsatellite markers may be useful in Prunus phylogenetic analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call