Abstract

Serving as an elastic model system for food gels, characteristics of polyacrylamide (PAAm) gels were investigated using small amplitude and large deformation rheological tests. The PAAm gels displayed elastic or viscoelastic behavior depending on network crosslink density. For elastic PAAm gels, the rheological properties obeyed the theory of rubber elasticity; whereas for viscoelastic PAAm gels, shear modulus depended on temperature. The elastic PAAm gel fracture parameters did not change with deformation rate (0.2–5.5 s−1), indicating insignificant viscous flow during deformation. Fracture stress was correlated with gel monomer concentration, whereas the fracture strain remained constant regardless of the monomer concentration. In addition, the stress was linearly proportioned with strain up to fracture, indicating that PAAm gels did not experience finite network chain extensibility during large deformation. Consequently, the fracture of PAAm gels did not result from the extensional limitation of network chains, nor did gel fracture result from the nonlinear force–distance relationship between polymer connections. Purportedly, the fracture of PAAm gels was caused by external force overcoming the gel cohesive forces, and low strength of PAAm gels compared to rubbers caused fracture prior to experiencing nonlinear stress-strain deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.