Abstract

Various amounts of nanoscale rutile TiO 2 particle are used as fillers in the preparation of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP)-based porous polymer electrolytes. Physical, electrochemical and transport properties of the electrolyte films are investigated in terms of surface morphology, thermal and crystalline properties, swelling behavior after absorbing electrolyte solution, chemical and electrochemical stabilities, ionic conductivity, and compatibility with lithium electrode. Contrary to reported inorganic fillers showing the maximum content lower than 50 wt.%, the self-supporting polymer electrolyte films can be obtained even when using higher content of 70 wt.% rutile TiO 2 nanoparticles. The physical and electrochemical properties of polymer membrane are highly improved by the addition of TiO 2 nanoparticles as good dispersion of fillers, low liquid uptake but adequate ionic conductivity, excellent electrochemical stability, and stabilized interfacial resistance with lithium electrode. An emphasis should be put on the fact that the sufficient ionic conductivity obtained is led by the liquid medium within nano-pores as well as effective ion transport supported by rutile TiO 2. As a result, the sample with 30–40 wt.% rutile TiO 2 is confirmed as the best polymer electrolyte for rechargeable lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.