Abstract

BackgroundReversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and cell division. However, the role of its cognate phosphatase, PhpP, is not well defined.ResultsHere, we report the successful construction of a ΔphpP mutant in the unencapsulated S. pneumoniae Rx1 strain and the characterization of its phenotype. We demonstrate that PhpP negatively controls the level of protein phosphorylation in S. pneumoniae both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase, StkP. Catalytic inactivation or absence of PhpP resulted in the hyperphosphorylation of StkP substrates and specific phenotypic changes, including sensitivity to environmental stresses and competence deficiency. The morphology of the ΔphpP cells resembled the StkP overexpression phenotype and conversely, overexpression of PhpP resulted in cell elongation mimicking the stkP null phenotype. Proteomic analysis of the phpP knock-out strain permitted identification of a novel StkP/PhpP substrate, Spr1851, a putative RNA-binding protein homologous to Jag. Here, we show that pneumococcal Jag is phosphorylated on Thr89. Inactivation of jag confers a phenotype similar to the phpP mutant strain.ConclusionsOur results suggest that PhpP and StkP cooperatively regulate cell division of S. pneumoniae and phosphorylate putative RNA binding protein Jag.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0865-6) contains supplementary material, which is available to authorized users.

Highlights

  • Reversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms

  • PhpP is not essential for pneumococcal survival and catalyzes dephosphorylation of StkP and its substrates phpP was reported to be essential in an stkP+ genetic background [10], a nonpolar markerless phpP knock-out was generated in two encapsulated S. pneumoniae strains using the Janus cassette-based two-step negative selection strategy [11]

  • We previously proposed a model in which Ser/Thr protein kinase StkP coordinates cell wall synthesis and cell division in S. pneumoniae [20]

Read more

Summary

Introduction

Reversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and cell division. Signal transduction via protein phosphorylation is one of the basic mechanisms that modulate numerous cellular processes in both prokaryotes and eukaryotes. Signal transduction in prokaryotes has been considered to occur primarily by two-component systems consisting of a histidine protein kinase and its cognate response regulator [1]. Other detailed studies have demonstrated that knock-out mutants of phosphatase genes are viable and that ESTPs play a role in virulence, cell wall metabolism and cell segregation [11,12,13,14,15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call