Abstract

Cirrus clouds often form on top of intense convective storms and influence the radiation exchange at the top of the atmosphere. From time to time these cirrus assume a typical plume form, whose origin is yet to be clearly explained. Investigation on plume's structure and composition is necessary using satellite observations and radiative transfer modeling, since in situ measurements are generally not available for the storm's extreme scenarios. Plumes of ice crystals produce a significant increase of cloud top reflectivity in channel 3 (3.55–3.93 μm) of National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), due to the small size of the crystals (of the order of the channel wavelength). AVHRR measurements over a severe storm are compared with radiative transfer simulations through a 1-D, plane-parallel radiative transfer model (RTM). The hydrometeor vertical distribution of a cumulonimbus tower is assumed, composed of a water droplet layer underlying an ice crystal layer. The presence of the plume on top of the cumulonimbus is simulated by an ice crystal layer whose optical depth and ice crystal size and habit are varied. The results of the comparisons show that channel 3 conveys relevant information on the ice crystal size and habit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.