Abstract

Phenotypic diversity of endothelial cells that line the various vascular spaces has been well established. However, it is not known if biochemical differences also exist, particularly in the numbers of receptors for plasma proteins. Equilibrium binding techniques were used to assess potential differences in the binding of 125I-labelled plasminogen to cultured human umbilical arterial endothelial cells and capillary endothelium, as compared with umbilical venous cells. The kinetic behaviour of plasminogen binding to all three types of cells was similar, with optimal binding occurring between 20 and 30 min of incubation. Binding of plasminogen to arterial, capillary, and venous cells was concentration dependent and reversible upon addition to excess unlabelled plasminogen. Scatchard analyses showed that artery, capillary, and venous endothelial cells all possess low affinity sites for plasminogen with Kd values of 0.30 +/- 0.07, 0.40 +/- 0.06, and 0.40 +/- 0.08 microM, respectively. Vein cells also possess an additional higher affinity binding site with a Kd of 0.07 +/- 0.01 microM, exhibiting a 6-fold greater affinity for plasminogen than the lower affinity sites on capillary and arterial endothelial cells. Assuming a stoichiometry of 1:1 for binding, the data indicate that arterial and capillary endothelial cells contain approximately 4.2 (+/- 0.9) x 10(6) and 4.1 (+/- 0.6) x 10(6) plasminogen receptors per cell. Venous cells contain both low and high density binding sites with 6.2 (+/- 0.8) x 10(6) and 12.4 (+/- 2.4) x 10(6) sites per endothelial cell. The presence of a higher affinity site on vein cells, but not on artery or capillary cells, may signal functional differences relating to fibrinolytic activity on the surface of these cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.