Abstract

PicoGreen is a fluorescent probe that binds dsDNA and forms a highly luminescent complex when compared to the free dye in solution. This unique probe is widely used in DNA quantitation assays but has limited application in biophysical analysis of DNA and DNA-protein systems due to limited knowledge pertaining to its physical properties and characteristics of DNA binding. Here we have investigated PicoGreen binding to DNA to reveal the origin and mode of PicoGreen/DNA interactions, in particular the role of electrostatic and nonelectrostatic interactions in formation of the complex, as well as demonstrating minor groove binding specificity. Analysis of the fluorescence properties of free PicoGreen, the diffusion properties of PG/DNA complexes, and the excited-state lifetime changes upon DNA binding and change in solvent polarity, as well as the viscosity, reveal that quenching of PicoGreen in the free state results from its intramolecular dynamic fluctuations. On binding to DNA, intercalation and electrostatic interactions immobilize the dye molecule, resulting in a >1000-fold enhancement in its fluorescence. Based on the results of this study, a model of PicoGreen/DNA complex formation is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.