Abstract

Chromium (VI) oxide (CrO3) has gained extensive attention due to its versatile physical and chemical properties. The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural properties of CrO3 powder. In this study, CrO3 powder was divided into two parts i.e. control and treatment. Control part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated CrO3 samples were characterized using Thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DTA showed that the melting point of treated CrO3 was increased upto 212.65°C (T3) as compared to 201.43°C in control. In addition, the latent heat of fusion was reduced upto 51.70% in treated CrO3 as compared to control. TGA showed the maximum thermal decomposition temperature (Tmax) around 330°C, was increased upto 340.12°C in treated CrO3 sample. XRD data revealed that lattice parameter and unit cell volume of treated CrO3 samples were reduced by 0.25 and 0.92% respectively, whereas density was increased by 0.93% in treated CrO3 sample as compared to control. The crystallite size of treated CrO3 was increased from 46.77 nm (control) to 60.13 nm after biofield treatment. FT-IR spectra showed the absorption peaks corresponding to Cr=O at 906 and 944 cm-1 in control, which were increased to 919 and 949 cm¬1 in treated CrO3 after biofield treatment. Overall, these results suggest that biofield treatment has substantially altered the physical, thermal and structural properties of CrO3 powder.

Highlights

  • Chromium oxides gain significant attention due to their diverse technological application in various industries

  • Differential thermal analyser (DTA) result showed that melting point of control sample was 201.43°C in control, it was changed to 204.28°C, 204.24°C, 212.65°C and 200.88°C in treated CrO3 samples T1, T2, T3 and T4, respectively

  • Data showed that the simultaneous DTA (SDTA) integral area at melting point was 235.53, 252.69, 235.13, 414.03, and 142.22 s °C in control, T1, T2, T3 and T4, respectively (Table 1)

Read more

Summary

Introduction

Chromium oxides gain significant attention due to their diverse technological application in various industries. Chromium oxides, CrO3 is an important compound for automobile industries due to its high corrosion resistance properties. In these industries, CrO3 is used for plating the chromium on car body and other auto components. CrO3 is used for plating the chromium on car body and other auto components It is a strong oxidising agent, which enables it to be used in various pharmaceutical and chemical industries [2,3]. Based on the above applications of CrO3 powder, authors planned to investigate an approach that could modify its physical, thermal and structural properties

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call