Abstract

2, 6-Diaminopyridine (2, 6-DAP) has extensive use in synthesis of pharmaceutical compounds. The objective of present research was to investigate the influence of biofield treatment on physical, thermal and spectral properties of 2, 6-DAP. The study was performed in two groups, control and treated. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 2, 6-DAP samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermo gravimetric analysis (TGA), Laser particle size analyzer, surface area analyzer, Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. XRD analysis revealed decrease in intensity of the peaks of treated 2, 6-DAP with respect to control. Unit cell volume and molecular weight were decreased by 2.97% and 2.98% respectively in treated 2, 6-DAP as compared to control. Crystallite size was decreased by 24.70% in treated 2, 6-DAP with respect to control. DSC analysis showed no significant change in melting temperature of treated 2, 6-DAP with respect to control. Nevertheless, the treated 2, 6-DAP showed significant increase in latent heat of fusion by 35.52% as compared to control 2, 6-DAP. TGA analysis showed decrease in percent weight loss of the treated 2, 6-DAP in comparison with control. Additionally, substantial increase in maximum thermal decomposition temperature (Tmax) was observed in treated 2, 6-DAP (203.52°C) as compared with control 2, 6-DAP (186.84°C). Particle size analysis results showed a substantial decrease in d50 (average particle size) and d99 (size exhibited by 99% of the particles) of the treated 2, 6-DAP by 20.5 and 57.4%, respectively as compared to control. Additionally, the BET analysis showed substantial increase in surface area of treated 2, 6-DAP by 75.58% as compared to control. FT-IR spectrum of treated 2, 6-DAP showed alteration in O-H stretching (3390→3370 cm-1), C-H stretching (3132→3138 cm-1) and N-H bending (1637→1604 cm-1) vibration peaks with respect to control. However, UV-visible analysis of treated 2, 6-DAP showed no significant changes in absorption peaks (λ max) with respect to control. Overall, the results demonstrated that biofield has significant impact on the physical, thermal and spectral properties of the treated 2, 6-DAP.

Highlights

  • Diaminopyridine are important class of organic compounds, mostly used for synthesis of dyes, cosmetics, drugs and explosives

  • The control and treated samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermo gravimetric analysis (TGA), laser particle size analyzer, surface area analyzer, Fourier transform infrared (FT-IR) and UV visible analysis

  • It is assumed that biofield treatment may cause disturbance in molecular arrangement or long range pattern of the treated 2, 6-DAP that might leads to decrease in crystallinity

Read more

Summary

Introduction

Diaminopyridine are important class of organic compounds, mostly used for synthesis of dyes, cosmetics, drugs and explosives. Biofield treatment has been reported to use as an effective alternative strategy for altering the physical and thermal properties of various metals and ceramics [7,8,9,10]. By considering the pharmaceutical significance of 2, 6-DAP, the present study was aimed to evaluate the influence of biofield treatment on physical, thermal and spectral properties of this compound. The biofield is a cumulative outcome of electric and magnetic field, exerted by the human body [17,18]. After considering the above mentioned outcome from biofield treatment and pharmaceutical applications of 2, 6-DAP, this work was undertaken to investigate the impact on physical, thermal and spectral properties of the 2, 6-DAP

Materials and Methods
Results and Discussions
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call