Abstract

In this paper, nylon 66/TiO2 composite nanofiber yarn has been developed using electrospinning method. The effect of the TiO2 nanoparticle content on the physical and tensile properties of the resulted composite nanofiber yarns has been extensively investigated using SEM, EDX, FTIR and mechanical testing machine. The probability density function is computed to model the diameter distribution of nanofibers constituent of the composite yarn for different percentages of TiO2. The addition of TiO2 nanoparticles into the electrospun composite nanofiber yarn decreases its tensile strength. The influence of thickness (diameter) and twist of the yarn on its tensile strength has been considered and the optimum conditions with improved tensile strength have been presented. Photoactivity of the composite yarns is tested against Rhodamine B (RhB). Results show that nanocomposite yarns are effective to be used as an economically and environmentally friendly photocatalyst in water remediation processes. They are not dispersed in the solution and can be removed easily without additional and costly steps of filtration or centrifuge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call