Abstract
We report the observation of a small but finite valley Hall effect (VHE) signal in two-dimensional MoS2 channels which is grown on SiO2/Si substrates under the circularly polarized light. And the angular dependence of VHE in two-dimensional MoS2 is studied. The VHE signal is a periodic function (period π) but with a phase shift, which confirms the presence of strong coupling between spin and valley. Furthermore, using a weak measurement under the condition of the optical circular dichroism, we find resembling beating phenomena, which suggests that a static electric field can induce oscillations. It is interesting that the interval time of the peak starts from an certain value, which is related to carrier densities. We suppose that this certain value is explained by a quasi-two-dimensional electron gas model, which is based on the Hall conductance quantized value of e2/h. To our knowledge, it is the first experiment that realizes such quantized values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.