Abstract
AbstractGiant reed (Arundo donax L.) is a perennial rhizomatous grass, which has attracted great attention as a potential lignocellulosic feedstock for bioethanol production due to high biomass yield in marginal land areas, high polysaccharide content and low inhibitor levels in microbial fermentations. However, little is known about the trait variation that is available across a broad ecotypic panel of A. donax nor the traits that contribute most significantly to yield and growth in drought prone environments. A collection of 82 ecotypes of A. donax sampled across the Mediterranean basin was planted in a common garden experimental field in Savigliano, Italy. We analysed the collection using 367 clumps representing replicate plantings of 82 ecotypes for variation in 21 traits important for biomass accumulation and to identify the particular set of ecotypes with the most promising potential for biomass production. We measured morpho‐physiological, phenological and biomass traits and analysed causal relationships between traits and productivity characteristics assessed at leaf and canopy levels. The results identified differences among the 82 ecotypes for all studied traits: those showing the highest level of variability included stomatal resistance, stem density (StN), stem dry mass (StDM) and total biomass production (TotDM). Multiple regression analysis revealed that leaf area index, StDM, StN, number of nodes per stem, stem height and diameter were the most significant predictors of TotDM and the most important early selection criteria for bioenergy production from A. donax. These traits were used in a hierarchical cluster analysis to identify groups of similar ecotypes, and a selection was made of promising ecotypes for multiyear and multisite testing for biomass production. Heritability estimates were significant for all traits. The potential of this ecotype collection as a resource for studies of germplasm diversity and for the analysis of traits underpinning high productivity of A. donax is highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.