Abstract

Kiwifruit hold significant nutritional value and are a good source of antioxidants due to their diverse range of bioactive compounds. Kiwifruit waste is generated throughout the food supply chain, particularly during transportation and storage. Kiwifruit rejected from the retail market due to unfavorable appearance still possess potential economic value as kiwifruit are abundant in phenolic compounds. The present work studied the phenolic profile and antioxidant potential of rejected kiwifruit, including SunGold (Actinidia chinensis), Hayward (Actinidia deliciosa), and round organic Hayward (Actinidia deliciosa). Regarding phenolics estimation, SunGold possessed the highest TPC (0.72 ± 0.01 mg GAE/g), while Hayward exhibited the highest TFC (0.05 ± 0.09 mg QE/g). In antioxidant assays, SunGold showed the highest antioxidant activities in DPPH (0.31 ± 0.35 mg AAE/g), FRAP (0.48 ± 0.04 mg AAE/g), ABTS (0.69 ± 0.07 mg AAE/g), •OH-RSA (0.07 ± 0.03 mg AAE/g) assays, and FICA (0.19 ± 0.07 mg EDTA/g), whereas Hayward showed the highest RPA (0.09 ± 0.02 mg AAE/g) and TAC (0.57 ± 0.04 mg AAE/g). Separation and characterization of phenolics were conducted using LC-ESI-QTOF-MS/MS. A total of 97 phenolics were tentatively characterized from rejected SunGold (71 phenolics), Hayward (55 phenolics), and round organic Hayward (9 phenolics). Hydroxycinnamic acids and flavonols were the most common phenolics characterized in the three samples. The quantitative analysis was conducted by HPLC-PDA and found that chlorogenic acid (23.98 ± 0.95 mg/g), catechin (23.24 ± 1.16 mg/g), and quercetin (24.59 ± 1.23 mg/g) were the most abundant phenolics present in the rejected kiwifruit samples. The notable presence of phenolic compounds and their corresponding antioxidant capacities indicate the potential value of rescuing rejected kiwifruit for further utilization and commercial exploitation.

Highlights

  • The results showed that the highest phenolic percentage recovery or yield was calculated in SunGold

  • The phenolic content in ethanol extracts of three cultivars of rejected kiwifruit samples were determined by Total Phenolic Content (TPC), Total Flavonoids Content (TFC), and Total Tannins Content (TTC)

  • HPLC-photodiode array (PDA) was utilized for the quantification of 10 individual phenolic compounds

Read more

Summary

Introduction

Fruits are susceptible to injuries, mechanical bruising, and over-ripening with the current methods of transportation and storage. This leads to considerable amounts of consumable foods being rejected at the retail level due to inadequate appearance that fails to meet quality standards [2]. It has been reported that approximately three million tons of kiwifruit are produced every year worldwide [3]. This indicates that there may be a significant amount of kiwifruit being rejected and wasted from the supply chain that could have been rescued to be further utilized up to their nutritional and commercial potential

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.