Abstract

Six cDNA clones from Phaseolus vulgaris, whose expression is induced by water deficit and ABA treatment (rsP cDNAs) were identified and characterized. The sequence analyses of the isolated clones suggest that they encode two types of late-embryogenesis abundant (LEA) proteins, a class-1 cytoplasmic low-molecular-weight heat shock protein (lmw-HSP), a lipid transfer protein (LTP), and two different proline-rich proteins (PRP). One of the putative LEA proteins identified corresponds to a novel 9.3 kDa LEA-like protein. During the plant response to a mild water deficit (psi w = -0.35 MPa) all genes identified present a maximal expression at around 16 or 24 h of treatment, followed by a decline in expression levels. Rehydration experiments revealed that those genes encoding PRPs and LTP transiently re-induce or maintain their expression when water is added to the soil after a dehydration period. This is not the case for the lea genes whose transcripts rapidly decrease, reaching basal levels a few hours after rehydration (4 h). Under water deficit and ABA treatments, the highest levels of expression for most of the genes occur in the root, excluding the ltp gene whose maximum expression levels are found in the aerial regions of the plant. This indicates that for these genes, both water deficit and ABA-dependent expression are under organ-specific control. The data presented here support the importance of these proteins during the plant response to water deficit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.