Abstract

The effect of Mn addition on microstructure and mechanical properties during isochronal annealing in the temperature range of 20 °C–570 °C of the mould-cast and heat-treated Al–Sc–Zr alloys with a various content of Mn and Zr was studied. The electrical resistometry together with the microhardness (HV0.3) measurements were compared to microstructure development. The microstructure development was examined by scanning electron microscopy, transmission electron microscopy and electron diffraction. Relative resistivity changes and the microhardness of the mould-cast and heat-treated Al–Mn–Sc–Zr alloys exhibit similar dependence on annealing temperature. Precipitation of the Al 3Sc particles is responsible for the peak microhardness in all these alloys. The microhardness decrease is slightly delayed during the isochronal annealing and during the high temperature heat treatment in the mould-cast alloy with the higher Zr-content due to a higher oversaturation of Zr. The decomposition sequence of the oversaturated solid solution of the studied Al–Mn–Sc–Zr alloys is compatible with the recently published decomposition sequence of the Al–Sc–Zr system and also with the formation of Mn,Fe-containing particles. It seems very probable that the addition of Mn does not influence the decomposition of solid solution of the ternary Al–Sc–Zr system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.