Abstract

The full set of material constants for relaxor-based ternary single crystals Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PIN-PMN-PT) were determined and compared to binary Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PMNT) crystals. The Curie temperature for rhombohedral compositions of PIN-PMN-PT was found to be in the range of 160-200 degrees C with ferroelectric rhombohedral to tetragonal phase transition on the order of 120-130 degrees C, more than 30 degrees C higher than that found for PMNT. The piezoelectric coefficients (d(33)) were in the range of 1100-1500 pCN, with electromechanical coupling factors (k(33)) about 89%-92% comparable to PMNT crystals. The coercive field of the ternary crystal was found to be 5.5 kVcm, double the value of the binary counterparts. The dielectric behavior under varying dc bias exhibited a similar trend as observed in PMNT with a much broader usage temperature range. Together with its enhanced field induced phase transition level, the ternary PIN-PMN-PT crystals are promising candidates for high temperature and high drive transducer applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.