Abstract
Synaptic phenotypes in living patients with psychiatric disorders are poorly characterized. Excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) is a fundamental component for neurotransmission. We recently developed a positron emission tomography (PET) tracer for AMPAR, [11C]K-2, the first technology to visualize and quantify AMPARs density in living human brain. In this study, we characterized patients with major psychiatric disorders with [11C]K-2. One hundred forty-nine patients with psychiatric disorders (schizophrenia, n = 42; bipolar disorder, n = 37; depression, n = 35; and autism spectrum disorder, n = 35) and 70 healthy participants underwent a PET scan with [11C]K-2 for measurement of AMPAR density. We detected brain regions that showed correlation between AMPAR density and symptomatology scores in each of four disorders. We also found brain areas with significant differences in AMPAR density between patients with each psychiatric disorder and healthy participants. Some of these areas were observed across diseases, indicating that these are commonly affected areas throughout psychiatric disorders. Schizophrenia, bipolar disorder, depression, and autism spectrum disorder are uniquely characterized by AMPAR distribution patterns. Our approach to psychiatric disorders using [11C]K-2 can elucidate the biological mechanisms across diseases and pave the way to develop novel diagnostics and therapeutics based on the synapse physiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.