Abstract

Total (volatile plus solid) and solid particle size, number, and mass emitted from a 3.8 kW diesel powered generator were characterized using a Scanning Mobility Particle Sizer (SMPS) that measures the size distribution of particles, and a catalytic stripper that facilitates the measurement of solid particles. The engine was operated at a constant speed for six steady-state engine operations ranging from idle to rated power. The solid particle size distributions were mainly monomodal lognormal distributions in nature reflecting a typical soot agglomerate size distribution with a number mean diameter in the size range from 98 nm to 37 nm as the load decreases from high to low. At idle, M6, however, the solid particle distribution was bimodal in nature with a high number of solid nanoparticles in the sub-20 nm size range. It is likely that these solid particles nucleated later in the combustion process from metallic ash typically present in the lube oil. The total particle size distributions exhibited a bimodal structure only at light load, M5, engine operation, where a high number of volatile nanoparticles were observed. The rest of the operating conditions exhibited monomodal distributions although the nature of the particles was vastly different. For the medium load modes, M2, M3, and M4, the particles were mainly solid particles. For the rated power, M1, and idle, M6, modes of engine operation, significant number of volatile particles grew to a size nearing that of soot particles making the distribution monomodal, similar to that of a solid particle distribution. This shows that monomodal distributions are not necessarily solid particle but they can be strongly dominated with volatile particles if significant particle growth takes place like the case at M1, and M6. The total number and mass concentration were extremely high at engine rated power. The number concentration exceeded 1.2 billion particles per cubic centimeter and the mass exceeded 750 milligrams per cubic meter. The number concentration is more than five orders of magnitude higher than a typical ambient level concentration, and the mass concentration is more than four orders of magnitude higher. It is important to indicate, however, that if the engine power rating is lowered by 35 percent from its designated level, both particle mass and number emissions will be reduced by two orders of magnitude. By measuring total and solid particle size and number concentration of particles, one can calculate other metrics such as surface area and mass to provide detail information about particle emissions. Such information can serve as an important database where all metrics of particle emissions are captured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call