Abstract

1. The formation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), induced by ATP and other nucleotides was investigated in mouse C2C12 myotubes. 2. ATP (100 microM) and ATP gamma S (100 microM) caused a sustained increase in cyclic AMP content of the cells, reaching a maximum after 10 min. The cyclic AMP content reached a maximum in the presence of 100 microM ATP, followed by a decline at higher ATP concentrations. ATP-induced cyclic AMP formation was inhibited by the P2-purinoceptor antagonist, suramin. 3. Myotubes hydrolysed ATP to ADP at a rate of 9.7 +/- 1.0 nmol mg-1 protein min-1. However, further hydrolysis of ADP to AMP and adenosine was negligible. 4. The cyclic AMP formation induced by ADP (10 microM-1 mM) showed similar characteristics to that induced by ATP, but a less pronounced decline was observed than with ATP. ADP-induced cyclic AMP formation was blocked by suramin, while cyclic AMP formation elicited by adenosine (10 microM-1 mM) was insensitive to suramin. 5. The ATP analogue, alpha,beta-methylene-ATP also induced a suramin-sensitive cyclic AMP formation, while 2-methylthio-ATP and the pyrimidine, UTP, did not affect cyclic AMP levels. 6. Stimulation of the myotubes with ATP or UTP (10 microM-1 mM) caused a concentration-dependent increase in the Ins(1,4,5)P3 content of the cells. ADP (100 microM-1 mM) was less effective. Adenosine did not affect Ins(1,4,5)P3 levels. 7. Incubation of the cells with UTP (30 microM- 1 mM) inhibited the ATP- and ADP-induced cyclic AMP formation, suggesting that stimulation of the 'nucleotide' type P2-receptor inhibits P2-purinoceptor mediated cyclic AMP formation in C2C12 myotubes. In contrast, UTP (30 microM-I mM) enhanced adenosine-induced cyclic AMP formation.8. Adenosine-sensitive P1-purinoceptors activating cyclic AMP formation were found in C2C12 myotubes.Further, a novel P2-purinoceptor is postulated, sensitive to ATP, ADP and ATPgammaS, which also activates the formation of cyclic AMP in C2C12 myotubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call