Abstract

Multifrequency pulsed EPR data are reported for a series of oxygen bridged (μ-oxo/μ-hydroxo) bimetallic manganese complexes where the oxygen is labeled with the magnetically active isotope (17)O (I = 5/2). Two synthetic complexes and two biological metallocofactors are examined: a planar bis-μ-oxo bridged complex and a bent, bis-μ-oxo-μ-carboxylato bridge complex; the dimanganese catalase, which catalyzes the dismutation of H2O2 to H2O and O2, and the recently identified manganese/iron cofactor of the R2lox protein, a homologue of the small subunit of the ribonuclotide reductase enzyme (class 1c). High field (W-band) hyperfine EPR spectroscopies are demonstrated to be ideal methods to characterize the (17)O magnetic interactions, allowing a magnetic fingerprint for the bridging oxygen ligand to be developed. It is shown that the μ-oxo bridge motif displays a small positive isotropic hyperfine coupling constant of about +5 to +7 MHz and an anisotropic/dipolar coupling of -9 MHz. In addition, protonation of the bridge is correlated with an increase of the hyperfine coupling constant. Broken symmetry density functional theory is evaluated as a predictive tool for estimating hyperfine coupling of bridging species. Experimental and theoretical results provide a framework for the characterization of the oxygen bridge in Mn metallocofactor systems, including the water oxidizing cofactor of photosystem II, allowing the substrate/solvent interface to be examined throughout its catalytic cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.