Abstract

Thin films of oxide materials are playing a growing role as critical elements in optoelectronic devices and nanoscale devices. In this work, thin films of some typical oxides such as WO 3, Ga 2O 3 and SrTiO 3 were investigated. We present measurements of those films, using various optical techniques like photoconductivity transients over a wide time range and photo-Hall measurements. Analysis of the photo-Hall and photoconductivity data permits the determination of the contribution to the photoconductivity made by the carrier mobility and concentration. A model for dispersive carrier transport was proposed to explain the relaxation of the photoconductivity in oxide thin films. In addition, photoluminescence characterization was used to study microstructures and energy band in oxide thin films. The broad emission from oxide host, consisting of several band peaks, was likely due to a recombination process with several possible paths. The dependence of the luminescent intensity on the annealing atmosphere was associated with the presence of oxygen vacancies. It is suggested that our optical analysis efforts have improved the understanding of oxide thin films, and this should lead to the necessary advancements in a variety of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.