Abstract
Amorphous Zr–Cu–Ni–Al–[Ti, Nb] ribbons prepared by melt spinning under argon atmosphere were subjected to electrochemical investigations. Passive films developed at potentiostatic anodic polarization in sulphuric acid solution were investigated by Auger electron spectroscopy (AES) and sputter depth profiling. Changes in the shape of the Auger peaks have been analyzed by factor analysis of the spectra obtained during depth profiling. Pronounced changes in shape and position occur for the Zr, Al, and Ti Auger transitions, but not for Cu and Ni. At least three different peak shapes for O(KVV) were found and attributed to different oxygen binding states. The alloy composition has no significant effect on the thickness and composition of the oxide layer. In multi-element alloys preferential sputtering is a common phenomenon. In the steady state of sputtering, a significant depletion in Cu is found. At the oxide/metal interface, a distinct enrichment of copper is found for all alloys and treatments. The degree of this Cu enrichment depends on the pretreatment. It is higher for the electrochemically-passivated samples than for samples with oxide layers grown during melt spinning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.