Abstract

TNT transformation processes in sediment-free, “natural”, aquatic phytoremediation systems of Myriophyllum aquaticum were investigated with specific interest in oxidation products. Extraction procedures combining liquid−liquid extractions and solid-phase extractions were developed for the isolation of the mostly acidic, oxidized TNT metabolites. Six compounds unique from the reduction products of TNT were isolated and characterized by UV−vis, 1H, and 13C NMR spectroscopy, by mass spectroscopy, and by chemical synthesis where feasible. These compounds include 2-amino-4,6-dinitrobenzoic acid, 2,4-dinitro-6-hydroxy-benzyl alcohol, 2-N-acetoxyamino-4,6-dinitrobenzaldehyde, 2,4-dinitro-6-hydroxytoluene, and two binuclear metabolites unique from the customary azoxytetranitrotoluenes. The monoaryl compounds show clear evidence of oxidative transformations, methyl oxidation and/or aromatic hydroxylation. It is possible that oxidative transformation(s) preceded nitro reduction since studies on exposure of M. aquaticum to either 2-amino-4,6-dinitrotoluene or 4-amino-2,6-dinitrotoluene did not yield any of the oxidation products identified here. The accumulation of oxidation products was significant: 2-amino-4,6-dinitrobenzoic acid, 4.4%; 2,4-dinitro-6-hydroxy-benzyl alcohol, 8.1%; 2-N-acetoxyamino-4,6-dinitrobenzaldehyde, 7.8%; and, 2,4-dinitro-6-hydroxytoluene, 15.6%. The binuclear metabolites accounted for an estimated 5.6%. This study is the first direct evidence for oxidative transformations in aquatic phytoremediation systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call