Abstract

We present our source of polarization entangled photons, which consist of orthogonally polarized and collinear parametric down converted photons sent to the same input of a nonpolarizing beam splitter. We show that a too straightforward characterization of the quantum state cannot account for all the experimental observations, in particular for the behavior of the doublecounts, which are the coincidences produced whenever both photons are dispatched by the beam splitter to the same measuring station (either Alice or Bob). We argue that in order to account for all observations, the state has to be entangled in polarization before the non-polarizing beam splitter, and we discuss the intriguing and nevertheless essential role of the time-compensation required to obtain such a polarization entanglement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call