Abstract
Parkinson disease (PD) is devastating to sensorimotor function that includes cranial/oromotor and limb motor deficits. However, the onset, progression, and neural correlates of PD-related dysfunctions are poorly understood. To address this gap, we used a genetic rat model of PD, DJ1 -/-, and hypothesized that motor deficits would manifest early in the disease process, be progressive in nature, and be related to pathologies in brainstem structures associated with sensorimotor function. The present study compares homozygous DJ1 -/- male rats to age-matched wild type controls. Progressive cranial sensorimotor function (ultrasonic vocalizations and tongue motor performance) and limb motor function (tapered balance beam) was analyzed at 2, 4, 6, and 8 months of age. Additionally, tyrosine hydroxylase cell counts were performed in the locus coeruleus and correlated to behavioral measures. We found that compared to wild type controls, DJ1 -/- show deficits in ultrasonic vocalizations as well as oromotor (tongue) deficits that were progressive. Overtime, DJ1 -/- rats cross a tapered balance beam with significantly decreased speed of traversal. Additionally, in the DJ1 -/-, tyrosine hydroxylase positive cells in the locus coeruleus are significantly reduced and are negatively correlated to oromotor behaviors. Characterizing the DJ1 -/- model of PD provides important foundational work necessary to define behavioral and early-onset biomarkers that parallels early-stage PD pathology in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.