Abstract

We report on some electrical properties and solid–solid phase transitions of organic–inorganic hybrid layered halide perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 which is one member of the long-chain compounds of the series (n-CnH2n+1NH3)2,(n = 8–18). The complex dielectric permittivity ϵ*(ω,T) and the ac conductivity σ (ω,T) were measured as functions of temperature 100 K < T < 390 K and frequency 5 kHz < f < 100 kHz. Moreover, the differential scanning calorimetery and the differential thermal analysis thermograms were performed. The analysis of our data confirms the existence of a structural phase transition at T ≈ (362 ± 2) K, where the compound changes its state from intercalation to non-intercalation with a drastic increase in the c-axis by about 16.4%.The behavior of the frequency-dependent conductivity follows the Jonscher universal power law: σ (ω, T) αῳs(ῳ,T). The mechanism of electrical conduction in the low-temperature phase (phase II) can be described as quantum mechanical tunneling model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call