Abstract

To ensure the viral safety of protein therapeutics made in mammalian cells, purification processes include dedicated viral clearance steps to remove or inactivate adventitious and endogenous viruses. One such dedicated step is low pH treatment, a robust and effective method commonly used in monoclonal antibody production to inactivate enveloped viruses. To characterize the operating space for low pH viral inactivation, we performed a statistically designed experiment evaluating the effect of pH, temperature, hold duration, acid type, and buffer concentration on inactivation of the retrovirus model, XMuLV. An additional single factor experiment was performed to study the effect of protein concentration. These data were used to generate predictive models of inactivation at each time point studied, which can be used to identify conditions for robust and effective XMuLV inactivation. At pH 3.6, XMuLV inactivation was rapid, robust, and relatively unaffected by the other factors studied, providing support for this as a generic viral inactivation condition for products that can tolerate this low pH. At pH 3.7 and 3.8, other factors besides pH affected XMuLV inactivation. By understanding the impact of each factor on inactivation, the factors can be manipulated within the operating space to ensure effective inactivation while achieving desired product quality goals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.