Abstract

Measurement of oil-water flow parameters is of great importance in petroleum industry. Due to its complicated flow structure, it is still a challenging problem. This paper presents the use of a multi-electrode conductance sensor and a dual-plane electrical resistance tomography (ERT) sensor to measure phase fraction and velocity in a horizontal oil-water flow. A series of experiments is carried out on a two-phase flow loop using mineral white oil and tap water. Taking advantage of different conductivity values of two fluids, the estimation of phase fraction is obtained by conductance measurements. By correlating voltage fluctuation signals measured from upstream and downstream sensor, the velocity of oil-water flow is evaluated. The phase fraction and velocity measured from two techniques are compared. Experimental results show that the multi-electrode conductance sensor is more suitable to estimate phase fraction of oil-water mixture. For the velocity measurement, cross correlation velocity obtained with multi-electrode conductance sensor is more closer to the mixture velocity of oil-water mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call