Abstract

The pyrolysis of oil shale to produce transportation fuels is a complex process. The organic matter in the oil shale is tightly bound with a heterogeneous mineral matrix. Several physical changes occur during the thermal conversion of kerogen in oil shale to produce hydrocarbon products. The creation of pore space during pyrolysis is an important physical process which determines the flow behavior of the pyrolysis products and the ultimate recovery. In this paper, we report the effect of temperature (350–500°C) on oil shale pyrolysis and creation of pore volume during thermal treatment. One inch diameter oil shale cores from different depths of a single drill hole in the Uinta Basin were used. Increase in the pyrolysis temperature resulted in higher weight loss and a corresponding increase in the oil yield. Three-dimensional X-ray micro tomography (XMT) was performed to characterize and to analyze the nature of the pore network structure before and after pyrolysis. XMT scans of the cores at 42μm voxel resolution displayed distinguishable features of reaction products and source rock. Unconstrained pyrolysis of organic rich core produced large pore space during thermal treatment. The three-dimensional pore network structure was established with pores as large as 500μm developed after pyrolysis. Lattice Boltzmann simulation of flow through the developed pore network structure suggested that permeabilities from 173 Darcy to 2919 Darcy can be expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.