Abstract

IntroductionThe primary aim was to explore the criteria used in characterization of reparative cells and mineralized matrices formed after treatment of pulp exposures, and the sequence of relative events. The secondary aim was to evaluate whether the reparative events depend on the experimental model species, age, and therapeutic intervention. MethodsA literature search of databases using different combinations of the key words was undertaken. Data analysis was based only on studies having histological or histochemical assessment of the pulp tissue responses. The search yielded 86 studies, 47 capping material-based and 39 bioactive application-based experiments, which provided data on morphological or functional characterization of the mineralized matrices and the associated cells. ResultsIn 64% of capping material-based and 72% of bioactive application-based experiments, a 2-zone mineralized matrix formation (atubular followed by tubular) was detected, whereas characterization of odontoblastic differentiation is provided in only 25.5% and 46.1% of the studies, respectively. In 93.3% of the studies showing odontoblast-like cells, differentiated cells were in association with tubular mineralized matrix formation. Analyses further showed that cell- and matrix-related outcomes do not depend on experimental model species, age, and therapeutic intervention. ConclusionsThe evidence of the reviewed scientific literature is that dental pulp cells secrete a dentin-like matrix of tubular morphology in relation to primitive forms of atubular or osteotypic mineralized matrix. Furthermore, data analysis showed that dental pulp cells express in vivo the odontoblastic phenotype, and secrete matrix in a predentin-like pattern, regardless of the model species, age, and therapeutic intervention used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call