Abstract

Ocular iontophoresis (IP) in isolated rabbit cornea and conjunctiva was examined in terms of transport enhancement, tissue viability and integrity using electrophysiological parameters by the Ussing-type chamber technique. Lidocaine hydrochloride (LC, a cationic compound), sodium benzoate (BA, anionic compound), and fluorescein isothiocyanate labeled dextran (molecular weight 4400 Da, FD-4, hydrophilic large compound) were used as model permeants. Direct electric current was applied at 0.5-5.0 mA/cm(2) for the cornea and 0.5-20 mA/cm(2) for the conjunctiva for 30 min. LC and BA fluxes across the cornea and conjunctiva were significantly increased by the application of electric current up to 2.3- and 2.5-fold and 4.0- and 3.4-fold, respectively, and returned to their baseline level on stopping the current. Furthermore, a much higher increase by IP application was obtained for the FD-4 transport. The increased FD-4 flux in the conjunctiva returned to baseline on stopping the current, whereas the flux in the cornea was sustained at a higher level after stopping the current. The transepithelial electric resistance of the cornea and conjunctiva was lowered by electric current application but fully recovered after stopping the current up to 2.0 mA/cm(2) for the cornea and 10 mA/cm(2) for the conjunctiva, suggesting that the corneal and conjunctival viability and integrity are maintained even after application of these current densities. These results indicate that ocular IP may be a useful non-invasive technique to achieve drug delivery of hydrophilic large molecules into the eyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call