Abstract

AbstractThe O and N gas ions (O3+, O+, N2+, and N4+) were implanted on the glassy carbon surface employing the electron cyclotron resonance ion source, which were characterized using electrochemical and surface analysis methods. The modified electrode was examined for the catalytic oxidation of bioorganic molecules including dopamine, where the O+ ion implanted GC revealed the best catalytic performance. The XPS and Raman results represented that the ion implantation made enrichment in graphite nanocrystalline structure with edge plane, showing the enhanced electrochemical activity. It showed excellent performance for dopamine detection without significant interferences between 50.0 nM and 400.0 μM with the detection limit of 10.0±2.5 nM (95 % confidence level). The reliability of proposed electrode was evaluated by the real urine sample analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call