Abstract

BackgroundThe human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles.ResultsWe used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA.ConclusionsOur data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters.

Highlights

  • The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous

  • We collected sweat for RNA from 25 individuals during a 30 min biking exercise, with the amount of sweat collected from each individual ranging from 6 to 175 ml (Table 1), these collections were processed individually to next generation sequencing (NGS) (Fig. 1), or Extracellular vesicles (EV) characterization

  • Mitochondria have been shown to be released by cells during oxidative stress [21], and to be transported in EVs [22], but we could not detect any intact mitochondria by transmission electron microscopy (TEM) in our preparations

Read more

Summary

Introduction

The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Sweat is a biofluid continuously produced by skin glands for secretion to the body surface. Unlike urine, which accumulates in the bladder over time, and is flushed out only when the bladder is emptied, sweat is released continuously, from less than 1 pL/minute in resting conditions to several nL/minute per gland during exercise [1], and could be collected non-invasively for analysis. Sweat analysis for forensic purposes has been reported [9, 10], but while saliva is routinely used for genotyping, no genetic tests based on sweat nucleic acids have been published beyond finding specific markers to distinguish sweat from other biofluids [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call