Abstract

Numerous studies have addressed the controlled pulmonary drug delivery properties of colloidal particles. However, only scant information on the potential of spray-drying for submicron particle preparation is available. By exploiting the advantages of spray-drying, the characteristics of submicron particles can be optimized to meet the requirements necessary for lung application.Submicron particles were prepared from organic poly(d,l-lactide-co-glycolide) (PLGA) solutions, and composite particles were spray-dried from aqueous PLGA nanosuspensions. The feed concentration, as well as the spray-mesh diameter influenced the resulting particle sizes. Nanoparticles were virtually unaffected after spray-drying. The aerodynamic characteristics of both particle species revealed aerosol particle sizes suitable for deposition in the deep lungs (≤4μm). While the entrapped drug was released within ~90min from the composite particles, extensive drug retardation (~480min) was observed for PLGA particles spray-dried from organic solution.These results suggest that nanospray-drying is a convenient method to prepare submicron, controlled drug delivery vehicles useful for pulmonary application potentially allowing access to alveolar tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.