Abstract

Polymer gel dosimeters are instrumental for clinical and research applications in radiotherapy. These dosimeters possess the unique ability to record dose distribution in three dimensions. A Polymer gel dosimeter is composed of organic molecules in a gel matrix, which upon irradiation polymerize to form a conjugated polymer with optical absorbance proportional to the irradiated dose. Other required characteristics of a radiotherapy clinical dosimeter are soft-tissue equivalency, linear dose-response in a range of clinical treatments, and long term stability for the duration of the analysis. The dosimeter presented in this paper is based on diacetylene bearing fatty acid aggregates embedded in a soft-tissue equivalent gel matrix, Phytagel™, which upon irradiation polymerize to form a blue phase polydiacetylene with a strong optical absorption. Initial characterization showed that PDA-gel irradiated with 160 kV x-ray responded linearly to the irradiated dose, and the calculated diffusion coefficient is what is very low. It was also found that the percentage depth dose (PDD) curve of the PDA-gel in a 4 × 4 cm2 field, irradiated with 6 MV x-rays, was with good agreement with the literature. PDA-gel has the potential to detect absorbed dose in a range of clinical radiological irradiation regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call