Abstract

A bacterial CRISPR-associated protein-9 nuclease (CRISPR/Cas9) from Streptococcus pyogenes has generated considerable excitement as a new tool to edit the targeted genome. Cytochrome P450 (CYP) 2E1 not only plays an important role in the xenobiotic metabolism and chemical toxicity, but also is involved in many kinds of diseases, such as alcoholic liver diseases and diabetes. Despite its importance, few animal models are used to predict CYP2E1 properties in physiology, pathology, as well as carcinogen activation. To establish a novel model for investigating the functions of CYP2E1 in vivo, this study has successfully generated the Cyp2e1 knockout (KO) rat model without detectable off-target effects using CRISPR/Cas9 system. The Cyp2e1 KO rats were viable and fertile and did not display any obvious physiological abnormities. The absent expression of CYP2E1 in KO rats also resulted in inactive behaviors in the metabolism of CYP2E1 substrates. The Cyp2e1 KO rats as a novel and available rodent animal model provide a powerful tool for the study of CYP2E1 in the chemical metabolism, toxicity, carcinogenicity, and its core factor in drug–drug interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.