Abstract

We have obtained interfacial properties of Galinstan, a nontoxic liquid-metal alloy, to help replace mercury in miniature devices. To prevent formation of an oxide skin that severely hinders the fluidic behavior of small Galinstan droplets and leads to inaccurate property data, we performed our experiments in a nitrogen-filled glove box. It was found that only if never exposed to oxygen levels above 1 part per million (ppm) would Galinstan droplets behave like a liquid. Two key properties were then investigated: contact angles and surface tension. Advancing and receding contact angles of Galinstan were measured from sessile droplets on various materials: for example, 146.8 and 121.5, respectively, on glass. Surface tension was measured by the pendant-drop method to be 534.6 10.7 mN/m. All the measurements were done in nitrogen at 28 with oxygen and moisture levels below 0.5 ppm. To help design droplet-based microfluidic devices, we tested the response of Galinstan to electrowetting-on-dielectric actuation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.