Abstract

N-Methylcanadine and N-methylstylopine are two types of isoquinoline alkaloids which are considered to be the main medicinally active constituents of the genus Papaveraceae. However, to date, no metabolism studies of N-methylcanadine and N-methylstylopine have been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of these two alkaloids in rat liver S9. N-Methylcanadine or N-methylstylopine was incubated with rat liver S9 for 1 h, and then the incubation mixture was processed with 15% trichloroacetic acid. High-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) as a reliable analytical method was used. The structural characterization of these metabolites was performed by the combination of the accurate MS/MS spectra and the known elemental composition. As a result, a total of four metabolites of N-methylcanadine and five metabolites of N-methylstylopine in rat liver S9 were tentatively identified. The cleavage of the methylenedioxy group of the drugs was the main metabolic pathway of N-methylcanadine and N-methylstylopine. The present study is the first in vitro metabolic investigation of N-methylcanadine and N-methylstylopine in rat liver S9 using a reliable HPLC/QqTOF-MS method. The metabolic pathways of N-methylcanadine and N-methylstylopine are tentatively proposed. This work lays the foundation for the in vivo metabolism of the two compounds in animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.