Abstract
The heats of formation (HOFs), thermal stability, and detonation properties for a series of nitrogen-bridged 1,2,4,5-tetrazine-, furazan-, and 1H-tetrazole-based polyheterocyclic compounds (3,6-bis(1H-1,2,3,4-tetrazole-5-ylamino)-1,2,4,5- tetrazine (TST), 3,6-bis(furazan-5-ylamino)-1,2,4,5-tetrazine (FSF), 3,4-bis(1,2,4,5- tetrazine-3-ylamino)-furazan (SFS), 3,4-bis(1H-1,2,3,4-tetrazole-5-ylamino)-furazan (TFT), 1,5-bis(1,2,4,5-tetrazine-3-ylamino)-1H-1,2,3,4-tetrazole (STS), and 1,5-bis(furazan-3-ylamino)-1H-1,2,3,4-tetrazole (FTF) derivatives) were systematically studied by using density functional theory. The results show that the -N(3) or -NHNH(2) group plays a very important role in increasing the HOF values of the derivatives. Among these series, the SFS derivatives have lower energy gaps, while the TFT derivatives have higher ones. Incorporation of the -NH(2) group into the FSF, SFS, STS, or FTF ring is favorable for enhancing its thermal stability, whereas the substitution of the -NHNH(2) group could increase the thermal stability of the TST, SFS, STS, or FTF ring. The calculated detonation properties indicate that the -NO(2) or -NF(2) is very helpful for enhancing the detonation performance for these derivatives. Considering the detonation performance and thermal stability, six derivatives may be regarded as promising candidates of high-energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.