Abstract

Metallic biomaterial like stainless steel, Co-based alloy, Ti and its alloy are widely used as artificial hip joints, bone plates and dental implants. However; this alloy releases ions from the surface liable to do serious harm to human bodies. For overcoming surface originated problems, various surface modification technique have been used on the metallic implants. In this study, the nitrogen was implanted by a process of ion implantation at 60 keV with different fluences of 1 x 1016, 5 x 1016, 1x1017 and 5 x 1017 ions/cm2. Corrosion resistance of Ti and ion implanted Ti were investigated by an electrochemical test, at 37°C in normal saline solution. Tafel extrapolation method was used for calculating corrosion rate. ICP-AES studies were carried out to determine amount of ions leached out from samples when kept immersed in normal saline solution. Corrosion stability and elemental out-diffusion resistance was found to be increased by nitrogen ion implantation. The implanted samples showed variation in the corrosion resistance with varying doses and the sample implanted at 1 X 1017 ions/cm2 showed an optimum corrosion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.