Abstract

The nitrergic nerve appears to have a major role in the neuronal regulation of penile erection. Cholinergic innervation has been shown histochemically in penile cavernous tissues, but its functional role is not well understood. This study was aimed at examining the functional properties of the nitrergic nerve and the possible involvement of cholinergic function in the regulation of monkey penile erection in vivo and in vitro. In anesthetized Japanese monkeys, electrical stimulation of the cavernous nerve caused a frequency-dependent increase in intracavernous pressure and penile erection, and atropine enhanced the pressure response. Intravenous injections of N(G)-nitro-L-arginine (L-NA) markedly inhibited the stimulation-induced pressure increase and the erectile response, and L-arginine partially restored the pressure response. In some monkeys, the intracavernous pressure increase caused by nerve stimulation was reversed by treatment with L-NA; however, L-arginine restored the pressor response. In addition, hexamethonium suppressed the pressure increase that resulted from the nerve stimulation. In corpus cavernosum isolated from monkeys, transmural electrical stimulation elicited frequency-dependent relaxation. The relaxation was attenuated by physostigmine, and was potentiated by atropine. Relaxation was markedly inhibited by treatment with L-NA. It appears that nitric oxide (NO) released from inhibitory nerves, even at low frequencies, has a pivotal role in the initiation and maintenance of intracavernous pressure increase and penile erection in monkeys. Prejunctional muscarinic receptors in nitrergic nerves are expected to participate in the impairment of NO release. Nitrergic nerves responsible for penile erection may originate from ganglia close to the corpus cavernosum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.