Abstract

In this work lignocellulosic fibers were obtained from Yucca aloifolia L. leaves and their chemical, morphological, thermal and mechanical properties were studied. The fibers were pullout from the leaves and characterized by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), chemical characterization, thermogravimetric analysis (TGA), single fiber tensile tests and scanning electron microscopy (SEM). The cellulose crystallinity index found was 69.43%. The fibers presented a high cellulose content, ~ 52.5%, and they are thermally stable until 193.4 °C. The tensile test for single fibers showed average results for the tensile strength of 800 MPa, Young's modulus of 39 GPa, and 2% strain at failure. Morphological analysis indicated the presence of a large number of parenchymal cells and not cellulosic constituents in fiber surface. These results indicated that Yucca aloifolia L. fibers have potential to application in polymeric matrices as fibrous reinforcement material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.