Abstract

We report the growth and characterization of InP/InAsP/InP nanowires (NWs) and NW LEDs (NW-LEDs), which emit light at telecom wavelengths. InP-based NWs were grown by selective-area metal-organic vapor-phase epitaxy, and a thin InAsP layer was embedded in the NWs. The NW exhibited emission lines in their low-temperature photoluminescence spectra, suggesting the formation of quantum dots (QDs) in the NW. NW-LED operation was demonstrated at both room and low temperatures in the telecom band, but it was found that the emission wavelength range and blueshift behavior induced by current injection differed considerably between room and low temperatures. Our results suggest that an efficient path for carrier injection into the active InAsP layer should be explored for NW-QD-based single-photon sources operating via current-injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.