Abstract

Because of its high surface and interface sensitivity, the nonlinear optical technique of second harmonic generation (SHG) is a designated method for investigating nanostructured metal surfaces. Indeed, the latter present a high surface-to-volume ratio, but even more importantly, they can exhibit strong near-field enhancements or "hot spots". Hot spots often appear as a result of geometric features on the nanoscale or surface plasmon resonances, which are collective electron oscillations on the surface that, on the nanoscale, can readily be excited by light. In the last 10 years, near-field hot spots have been responsible for dramatic developments in the field of nano-optics. In this Feature Article, the influence of hot spots on the SHG response of nanostructured metal surfaces is discussed on both the microscopic and macroscopic levels. On the microscopic level, the nanostructured metal surfaces were characterized by scanning SHG microscopy, complemented by rigorous numerical simulations of the near-field and of the local electric currents at the fundamental frequency. On the macroscopic level, SHG-circular dichroism and magnetization-induced SHG characterization techniques were employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call